Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.576
Filtrar
1.
Methods Mol Biol ; 2794: 79-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630222

RESUMO

Reconstitution of intracellular transport in cell-free in vitro assays enables the understanding and dissection of the molecular mechanisms that underlie membrane traffic. Using total internal reflection fluorescence (TIRF) microscopy and microtubules, which are immobilized to a functionalized glass surface, the kinetic properties of single kinesin molecules can be imaged and analyzed in the presence or absence of microtubule-associated proteins. Here, we describe methods for the in vitro reconstitution of the motility of the neuronal kinesin motor KIF1A on microtubules associated with heteromeric septin (SEPT2/6/7) complexes. This method can be adapted for various neuronal septin complexes and kinesin motors, leading to new insights into the spatial regulation of neuronal membrane traffic by microtubule-associated septins.


Assuntos
Cinesinas , Septinas , Microtúbulos , Citoesqueleto , Proteínas Associadas aos Microtúbulos
2.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587639

RESUMO

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , Metáfase
3.
J Phys Chem Lett ; 15(14): 3893-3899, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38563569

RESUMO

Kinesin is a typical motor protein that can use the chemical energy of ATP hydrolysis to step processively on microtubules, alternating between one-head-bound and two-head-bound states. Some published experimental results showed that the duration of the one-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the two-head-bound state is independent of ATP concentration, indicating that ATP binding occurs in the one-head-bound state. On the contrary, other experimental results showed that the duration of the two-head-bound state increases greatly with a decrease in ATP concentration, whereas the duration of the one-head-bound state increases slightly with a decrease in ATP concentration, indicating that ATP binding occurs mainly in the two-head-bound state. Here, we explain consistently and quantitatively these contradictory experimental results, resolving the controversy that is critical to the chemomechanical coupling mechanism of the kinesin motor.


Assuntos
Trifosfato de Adenosina , Cinesinas , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Cinética
4.
Lupus Sci Med ; 11(1)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599670

RESUMO

BACKGROUND: Cranial neuropathies (CN) are a rare neuropsychiatric SLE (NPSLE) manifestation. Previous studies reported that antibodies to the kinesin family member 20B (KIF20B) (anti-KIF20B) protein were associated with idiopathic ataxia and CN. We assessed anti-KIF20B as a potential biomarker for NPSLE in an international SLE inception cohort. METHODS: Individuals fulfilling the revised 1997 American College of Rheumatology (ACR) SLE classification criteria were enrolled from 31 centres from 1999 to 2011 and followed annually in the Systemic Lupus Erythematosus International Collaborating Clinics inception cohort. Anti-KIF20B testing was performed on baseline (within 15 months of diagnosis or first annual visit) samples using an addressable laser bead immunoassay. Logistic regression (penalised maximum likelihood and adjusting for confounding variables) examined the association between anti-KIF20B and NPSLE manifestations (1999 ACR case definitions), including CN, occurring over the first 5 years of follow-up. RESULTS: Of the 1827 enrolled cohort members, baseline serum and 5 years of follow-up data were available on 795 patients who were included in this study: 29.8% were anti-KIF20B-positive, 88.7% female, and 52.1% White. The frequency of anti-KIF20B positivity differed only for those with CN (n=10) versus without CN (n=785) (70.0% vs 29.3%; OR 5.2, 95% CI 1.4, 18.5). Compared with patients without CN, patients with CN were more likely to fulfil the ACR haematological (90.0% vs 66.1%; difference 23.9%, 95% CI 5.0%, 42.8%) and ANA (100% vs 95.7%; difference 4.3%, 95% CI 2.9%, 5.8%) criteria. In the multivariate analysis adjusting for age at baseline, female, White race and ethnicity, and ACR haematological and ANA criteria, anti-KIF20B positivity remained associated with CN (OR 5.2, 95% CI 1.4, 19.1). CONCLUSION: Anti-KIF20B is a potential biomarker for SLE-related CN. Further studies are needed to examine how autoantibodies against KIF20B, which is variably expressed in a variety of neurological cells, contribute to disease pathogenesis.


Assuntos
Lúpus Eritematoso Sistêmico , Reumatologia , Humanos , Feminino , Estados Unidos , Masculino , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Autoanticorpos , Biomarcadores , Cinesinas
5.
Elife ; 132024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564240

RESUMO

The chromosomal passenger complex (CPC) is an important regulator of cell division, which shows dynamic subcellular localization throughout mitosis, including kinetochores and the spindle midzone. In traditional model eukaryotes such as yeasts and humans, the CPC consists of the catalytic subunit Aurora B kinase, its activator INCENP, and the localization module proteins Borealin and Survivin. Intriguingly, Aurora B and INCENP as well as their localization pattern are conserved in kinetoplastids, an evolutionarily divergent group of eukaryotes that possess unique kinetochore proteins and lack homologs of Borealin or Survivin. It is not understood how the kinetoplastid CPC assembles nor how it is targeted to its subcellular destinations during the cell cycle. Here, we identify two orphan kinesins, KIN-A and KIN-B, as bona fide CPC proteins in Trypanosoma brucei, the kinetoplastid parasite that causes African sleeping sickness. KIN-A and KIN-B form a scaffold for the assembly of the remaining CPC subunits. We show that the C-terminal unstructured tail of KIN-A interacts with the KKT8 complex at kinetochores, while its N-terminal motor domain promotes CPC translocation to spindle microtubules. Thus, the KIN-A:KIN-B complex constitutes a unique 'two-in-one' CPC localization module, which directs the CPC to kinetochores from S phase until metaphase and to the central spindle in anaphase. Our findings highlight the evolutionary diversity of CPC proteins and raise the possibility that kinesins may have served as the original transport vehicles for Aurora kinases in early eukaryotes.


Assuntos
Cinesinas , Trypanosoma , Humanos , Survivina , Citoesqueleto , Mitose
6.
Elife ; 122024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527106

RESUMO

Cells fine-tune microtubule assembly in both space and time to give rise to distinct edifices with specific cellular functions. In proliferating cells, microtubules are highly dynamics, and proliferation cessation often leads to their stabilization. One of the most stable microtubule structures identified to date is the nuclear bundle assembled in quiescent yeast. In this article, we characterize the original multistep process driving the assembly of this structure. This Aurora B-dependent mechanism follows a precise temporality that relies on the sequential actions of kinesin-14, kinesin-5, and involves both microtubule-kinetochore and kinetochore-kinetochore interactions. Upon quiescence exit, the microtubule bundle is disassembled via a cooperative process involving kinesin-8 and its full disassembly is required prior to cells re-entry into proliferation. Overall, our study provides the first description, at the molecular scale, of the entire life cycle of a stable microtubule structure in vivo and sheds light on its physiological function.


Assuntos
Cinesinas , Microtúbulos , Cinesinas/genética , Cinetocoros , Divisão Celular , Saccharomyces cerevisiae , Proteínas Associadas aos Microtúbulos
7.
Int J Oncol ; 64(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426627

RESUMO

Despite advances in treatment and early detection, breast cancer remains one of the most common types of cancer and is the second leading cause of cancer death after lung cancer in women. Therefore, there is an urgent need to develop new biomarkers and therapeutic targets for the treatment of breast cancer. Based on gene expression profiles and subsequent screening performed in a preliminary study, kinesin family member 20B (KIF20B) was selected as a candidate target molecule, because it was highly and frequently expressed in all subtypes of breast cancer and barely detected in normal tissues. Reverse transcription­quantitative PCR and western blotting revealed that KIF20B mRNA and protein expression levels were upregulated in most breast cancer cell lines but were scarcely expressed in normal mammary epithelial cells. Immunohistochemical staining of a tissue microarray showed that KIF20B was detected in 145 out of 251 (57.8%) breast cancer tissues. Strong KIF20B expression was significantly related to advanced pathological N stage. Moreover, patients with breast cancer and strong KIF20B expression exhibited a significantly worse prognosis than those with weak or negative KIF20B expression (P<0.0001, log­rank test). In multivariate analysis, strong expression was an independent prognostic factor for patients with breast cancer. Furthermore, knockdown of KIF20B expression by small interfering RNA inhibited breast cancer cell proliferation and induced apoptosis. In addition, Matrigel cell invasion assays revealed that the invasiveness of breast cancer cells was significantly decreased by KIF20B silencing. Since KIF20B is an oncoprotein that is strongly expressed in highly malignant clinical breast cancer and serves a pivotal role in breast cancer cell proliferation, survival and invasion, KIF20B could be considered a candidate biomarker for prognostic prediction and a potential molecular target for developing new therapeutics, such as small molecule inhibitors, for a wide variety of breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , RNA Interferente Pequeno , Células MCF-7 , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Movimento Celular/genética , Cinesinas/metabolismo
8.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477340

RESUMO

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas F-Box , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Domínios de Homologia à Plecstrina , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Axonal/fisiologia
9.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512027

RESUMO

Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adaptor MADD, potentially preventing the formation of the RAB3A-MADD-KIF1A/1Bß complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Vesículas Sinápticas , Proteína rab3A de Ligação ao GTP , Humanos , Transporte Axonal , Axônios , Homeostase , Cinesinas , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Fosforilação , Proteína rab3A de Ligação ao GTP/genética
10.
Cell Commun Signal ; 22(1): 199, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553728

RESUMO

KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.


Assuntos
Citocinese , Cinesinas , Animais , Camundongos , Cinesinas/genética , Cinesinas/metabolismo , Meiose , Microtúbulos/metabolismo , Oócitos/metabolismo
11.
J Comput Aided Mol Des ; 38(1): 16, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556596

RESUMO

The kinesin spindle protein (Eg5) is a mitotic protein that plays an essential role in the formation of the bipolar spindles during the mitotic phase. Eg5 protein controls the segregation of the chromosomes in mitosis which renders it a vital target for cancer treatment. In this study our approach to identifying novel scaffold for Eg5 inhibitors is based on targeting the novel allosteric pocket (α4/α6/L11). Extensive computational techniques were applied using ligand-based virtual screening and molecular docking by two approaches, MOE and AutoDock, to screen a library of commercial compounds. We identified compound 8-(3-(1H-imidazol-1-ylpropylamino)-3-methyl-7-((naphthalen-3-yl)methyl)-1H-purine-2, 6 (3H,7H)-dione (compound 5) as a novel scaffold for Eg5 inhibitors. This compound inhibited cancer cell Eg5 ATPase at 2.37 ± 0.15 µM. The molecular dynamics simulations revealed that the identified compound formed stable interactions in the allosteric pocket (α4/α6/L11) of the receptor, indicating its potential as a novel Eg5 inhibitor.


Assuntos
Cinesinas , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Cinesinas/metabolismo , Ligantes , Mitose
12.
Mol Biol Cell ; 35(5): ar61, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446634

RESUMO

Neurons are polarized cells that require accurate membrane trafficking to maintain distinct protein complements at dendritic and axonal membranes. The Kinesin-3 family members KIF13A and KIF13B are thought to mediate dendrite-selective transport, but the mechanism by which they are recruited to polarized vesicles and the differences in the specific trafficking role of each KIF13 have not been defined. We performed live-cell imaging in cultured hippocampal neurons and found that KIF13A is a dedicated dendrite-selective kinesin. KIF13B confers two different transport modes, dendrite- and axon-selective transport. Both KIF13s are maintained at the trans-Golgi network by interactions with the heterotetrameric adaptor protein complex AP-1. Interference with KIF13 binding to AP-1 resulted in disruptions to both dendrite- and axon-selective trafficking. We propose that AP-1 is the molecular link between the sorting of polarized cargoes into vesicles and the recruitment of kinesins that confer polarized transport.


Assuntos
Complexo 1 de Proteínas Adaptadoras , Complexo de Golgi , Cinesinas , Rede trans-Golgi , Células Cultivadas , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Rede trans-Golgi/metabolismo
13.
Nat Methods ; 21(4): 569-573, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480903

RESUMO

Here we show that MINSTED localization, a method whereby the position of a fluorophore is identified with precisely controlled beams of a STED microscope, tracks fluorophores and hence labeled biomolecules with nanometer/millisecond spatiotemporal precision. By updating the position for each detected photon, MINSTED recognizes fluorophore steps of 16 nm within <250 µs using about 13 photons. The power of MINSTED tracking is demonstrated by resolving the stepping of the motor protein kinesin-1 walking on microtubules and switching protofilaments.


Assuntos
Cinesinas , Microtúbulos , Microtúbulos/metabolismo , Cinesinas/metabolismo , Microscopia
14.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475827

RESUMO

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Assuntos
Aciltransferases , Hiperalgesia , Canais Iônicos , Tato , Animais , Feminino , Masculino , Camundongos , Hiperalgesia/patologia , Canais Iônicos/metabolismo , Cinesinas/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos Endogâmicos C57BL , Dor , Primatas , Tato/fisiologia , Aciltransferases/metabolismo
15.
PLoS One ; 19(3): e0295652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478520

RESUMO

In intracellular active transport, molecular motors are responsible for moving biological cargo along networks of microtubules that serve as scaffolds. Cargo dynamics can be modified by different features of microtubule networks such as geometry, density, orientation modifications. Also, the dynamical behaviour of the molecular motors is determined by the microtubule network and by the individual and/or collective action of the motors. For example, unlike single kinesins, the mechanistic behavior of multiple kinesins varies from one experiment to another. However, the reasons for this experimental variability are unknown. Here we show theoretically how non-radial and quasi-radial microtubule architectures modify the collective behavior of two kinesins attached on a cargo. We found out under which structural conditions transport is most efficient and the most likely way in which kinesins are organized in active transport. In addition, with motor activity, mean intermotor distance and motor organization, we determined the character of the collective interaction of the kinesins during transport. Our results demonstrate that two-dimensional microtubule structures promote branching due to crossovers that alter directionality in cargo movement and may provide insight into the collective organization of the motors. Our article offers a perspective to analyze how the two-dimensional network can modify the cargo-motor dynamics for the case in which multiple motors move in different directions as in the case of kinesin and dynein.


Assuntos
Dineínas , Cinesinas , Cinesinas/metabolismo , Transporte Biológico , Transporte Biológico Ativo , Dineínas/metabolismo , Microtúbulos/metabolismo
16.
Cell Death Dis ; 15(3): 222, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493150

RESUMO

Unlike normal cells, cancer cells frequently exhibit supernumerary centrosomes, leading to formation of multipolar spindles that can trigger cell death. Nevertheless, cancer cells with supernumerary centrosomes escape the deadly consequences of unequal segregation of genomic material by coalescing their centrosomes into two poles. This unique trait of cancer cells presents a promising target for cancer therapy, focusing on selectively attacking cells with supernumerary centrosomes. Nek2A is a kinase involved in mitotic regulation, including the centrosome cycle, where it phosphorylates linker proteins to separate centrosomes. In this study, we investigated if Nek2A also prevents clustering of supernumerary centrosomes, akin to its separation function. Reduction of Nek2A activity, achieved through knockout, silencing, or inhibition, promotes centrosome clustering, whereas its overexpression results in inhibition of clustering. Significantly, prevention of centrosome clustering induces cell death, but only in cancer cells with supernumerary centrosomes, both in vitro and in vivo. Notably, none of the known centrosomal (e.g., CNAP1, Rootletin, Gas2L1) or non-centrosomal (e.g., TRF1, HEC1) Nek2A targets were implicated in this machinery. Additionally, Nek2A operated via a pathway distinct from other proteins involved in centrosome clustering mechanisms, like HSET and NuMA. Through TurboID proximity labeling analysis, we identified novel proteins associated with the centrosome or microtubules, expanding the known interaction partners of Nek2A. KIF2C, in particular, emerged as a novel interactor, confirmed through coimmunoprecipitation and localization analysis. The silencing of KIF2C diminished the impact of Nek2A on centrosome clustering and rescued cell viability. Additionally, elevated Nek2A levels were indicative of better patient outcomes, specifically in those predicted to have excess centrosomes. Therefore, while Nek2A is a proposed target, its use must be specifically adapted to the broader cellular context, especially considering centrosome amplification. Discovering partners such as KIF2C offers fresh insights into cancer biology and new possibilities for targeted treatment.


Assuntos
Centrossomo , Neoplasias , Humanos , Ciclo Celular , Morte Celular , Centrossomo/metabolismo , Análise por Conglomerados , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitose , Neoplasias/genética , Neoplasias/metabolismo , Fuso Acromático/metabolismo
17.
J Cell Mol Med ; 28(7): e18182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498903

RESUMO

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Nus , Peixe-Zebra/metabolismo , Instabilidade Cromossômica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proteínas Oncogênicas/genética , Cinesinas/genética
18.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470363

RESUMO

Mitochondria transport is crucial for axonal mitochondria distribution and is mediated by kinesin-1-based anterograde and dynein-based retrograde motor complexes. While Miro and Milton/TRAK were identified as key adaptors between mitochondria and kinesin-1, recent studies suggest the presence of additional mechanisms. In C. elegans, ric-7 is the only single gene described so far, other than kinesin-1, that is absolutely required for axonal mitochondria localization. Using CRISPR engineering in C. elegans, we find that Miro is important but is not essential for anterograde traffic, whereas it is required for retrograde traffic. Both the endogenous RIC-7 and kinesin-1 act at the leading end to transport mitochondria anterogradely. RIC-7 binding to mitochondria requires its N-terminal domain and partially relies on MIRO-1, whereas RIC-7 accumulation at the leading end depends on its disordered region, kinesin-1, and metaxin2. We conclude that transport complexes containing kinesin-1 and RIC-7 polarize at the leading edge of mitochondria and are required for anterograde axonal transport in C. elegans.


Assuntos
Transporte Axonal , Cinesinas , Animais , Axônios , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Mitocôndrias/metabolismo
19.
Mol Genet Genomics ; 299(1): 38, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517563

RESUMO

Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (G. hirsutum L.). Results showed that 159 kinesin genes, including 15 genes of the kinesin-13 gene subfamily, were identified in upland cotton; of which 157 kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 kinesin genes in upland cotton, including 10 kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 kinesin genes were significantly associated with three fiber traits, among which a kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.


Assuntos
Gossypium , Cinesinas , Gossypium/genética , Cinesinas/genética , Fibra de Algodão , Locos de Características Quantitativas/genética , Fenótipo , Celulose
20.
J Exp Clin Cancer Res ; 43(1): 68, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439082

RESUMO

BACKGROUND: Proteasome inhibitors (PIs) are one of the most important classes of drugs for the treatment of multiple myeloma (MM). However, almost all patients with MM develop PI resistance, resulting in therapeutic failure. Therefore, the mechanisms underlying PI resistance in MM require further investigation. METHODS: We used several MM cell lines to establish PI-resistant MM cell lines. We performed RNA microarray and EccDNA-seq in MM cell lines and collected human primary MM samples to explore gene profiles. We evaluated the effect of MUC20 on cuproptosis of PI-resistant MM cells using Co-immunoprecipitation (Co-IP), Seahorse bioenergetic profiling and in vivo assay. RESULTS: This study revealed that the downregulation of Mucin 20 (MUC20) could predict PI sensitivity and outcomes in MM patients. Besides, MUC20 attenuated PI resistance in MM cells by inducing cuproptosis via the inhibition of cyclin-dependent kinase inhibitor 2 A expression (CDKN2A), which was achieved by hindering MET proto-oncogene, receptor tyrosine kinase (MET) activation. Moreover, MUC20 suppressed MET activation by repressing insulin-like growth factor receptor-1 (IGF-1R) lactylation in PI-resistant MM cells. This study is the first to perform extrachromosomal circular DNA (eccDNA) sequencing for MM, and it revealed that eccDNA induced PI resistance by amplifying kinesin family member 3 C (KIF3C) to reduce MUC20 expression in MM. CONCLUSION: Our findings indicated that MUC20 regulated by eccDNA alleviates PI resistance of MM by modulating cuproptosis, which would provide novel strategies for the treatment of PI-resistant MM.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Oncogenes , Citoplasma , Antivirais , DNA , DNA Circular , Cinesinas , Mucinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...